Турбулентность в атмосфере и гидросфере - Definition. Was ist Турбулентность в атмосфере и гидросфере
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Турбулентность в атмосфере и гидросфере - definition

Турбулентность в ясном небе; Турбулентность чистого неба; Турбулентность при ясном небе; Болтанка в чистом небе; Турбулентность в чистом небе; Clear-air turbulence; Clear air turbulence
  • 327x327пкс
  • Турбулентность воздуха

Турбулентность в атмосфере и гидросфере      

Движение воздуха в атмосфере и воды в гидросфере в большинстве случаев имеет турбулентный характер (см. Турбулентность). Т. в а. и г. играет большую роль, так как именно благодаря турбулентности происходят обмен количеством движения и теплотой между атмосферой и океаном (включая, в частности, зарождение ветровых течений и волн в океане), испарение с поверхности океана и суши, вертикальный перенос тепла, влаги, солей, растворённых газов и различных загрязнений, диссипация кинетической энергии, рассеяние и флуктуации амплитуды и фазы звуковых, световых и радиоволн (включая мерцание звёзд, флуктуации радиосигналов космических аппаратов, сверхдальнее телевидение и т.п.).

Специфическими особенностями Т. в а. и г. являются очень широкий спектр масштабов турбулентных неоднородностей (от мм до тыс. км) и существенное влияние вертикального распределения плотности среды на развитие мелкомасштабной турбулентности.

Спектр масштабов турбулентности в атмосфере распадается на синоптическую область (макротурбулентность) с масштабами намного больше эффективной толщины атмосферы Н Турбулентность в атмосфере и гидросфере 10 км и квазидвумерными (квазигоризонтальными) турбулентными неоднородностями и микрометеорологическую область с масштабами намного меньше Н и существенно трёхмерными неоднородностями. В промежуточной мезометеорологической области сколько-нибудь интенсивная турбулентность редка. Макротурбулентность черпает энергию из крупномасштабных неоднородностей притока тепла к атмосфере от подстилающей поверхности, а затрачивает энергию главным образом на генерацию микротурбулентности при гидродинамической неустойчивости вертикальных градиентов скорости ветра.

Неустойчивая стратификация служит для микротурбулентности источником, а устойчивая - стоком энергии; в первом случае микротурбулентность оказывается интенсивной, во втором - слабой. Свойства микротурбулентности наиболее просты в приземном слое атмосферы толщиной в несколько десятков м, в котором вертикальные турбулентные потоки импульса τ и тепла q постоянны. При условиях квазистационарности и горизонтальной однородности характеристики крупномасштабных компонент такой турбулентности определяются, кроме высоты z и скорости трения , также параметром плавучести β = g/T0 и величиной q / cpρ (g - ускорение силы тяжести, cp и ρ - удельная теплоёмкость и плотность воздуха, T0 - средняя температура). Измеренные масштабами длины , времени L / υ* и температуры q / cp ρυ*, эти характеристики оказываются универсальными функциями безмерной высоты z / L или определяемого ею числа Ричардсона , (где u и Т- скорость ветра и температура).

Свойства океанической микротурбулентности определяются типичным для очень устойчиво стратифицированной жидкости наличием в океане вертикальной микроструктуры - долгоживущих квазиоднородных слоев с толщинами Турбулентность в атмосфере и гидросфере 1 м и менее, разделяемых поверхностями разрыва температуры и солёности. Турбулентность, сосредоточенная в этих слоях, слаба (не способна разрушать разделяющие слои поверхности разрыва), имеет малые числа Рейнольдса (определяемые толщинами слоев), а потому далека от универсального статистического равновесия и определяется особенностями каждого конкретного слоя (а не его глубиной).

Лит.: Монин А. С., Яглом А. М., Статистическая гидромеханика, ч. 1, М., 1965, ч. 2, М., 1967; Монин А. С., Каменкович В. М., Корт В. Г., Изменчивость Мирового океана, Л., 1974; Ламли Дж.-Л., Пановский Г.-А., Структура атмосферной турбулентности, пер. с англ., М., 1966.

А. С. Монин.

Мятежи в Спитхеде и Норе         
  • Побег HMS ''Clyde'' из Нора, [[30 мая]] [[1797]]. На заднем плане HMS ''Sandwich'' под красным флагом восстания, другой линейный корабль (слева) и фрегат (справа) стреляют для устрашения
  • Ричарда Паркера]].
Мятежи в Спитхеде и Норе () — два крупнейших мятежа по количеству участников в Королевском военно-морском флоте Великобритании, произошедшие в 1797. Были также меньшие по масштабу волнения на кораблях в других местах в том же году. Мятежи были потенциально опасны для Королевства, так как в то время страна была в состоянии войны с революционным правительством Франции. Были также опасения среди ряда представителей британского правящего класса, что мятежи могли стать началом более мощного восстания, аналогичного Великой французской революции.
Илюхин         
СТРАНИЦА ЗНАЧЕНИЙ В ПРОЕКТЕ ВИКИМЕДИА
Илюхин В. И.; В. И. Илюхин
Илю́хин (женская форма — ) — русская фамилия, произошедшая от мужского имени Илю́ха (грубовато-фамильярная форма имени Илья). Также — топоним.

Wikipedia

Турбулентность ясного неба

Турбуле́нтность я́сного не́ба (ТЯН) (турбулентность в ясном небе, жаргонизм в речи пилотов — «болтанка в чистом небе», в метеорологической документации — англ. Clear-air turbulence) — один из основных видов атмосферной турбулентности в авиации.